Automatically Acquiring Models of Preposition Use

نویسندگان

  • Rachele De Felice
  • Stephen G. Pulman
چکیده

This paper proposes a machine-learning based approach to predict accurately, given a syntactic and semantic context, which preposition is most likely to occur in that context. Each occurrence of a preposition in an English corpus has its context represented by a vector containing 307 features. The vectors are processed by a voted perceptron algorithm to learn associations between contexts and prepositions. In preliminary tests, we can associate contexts and prepositions with a success rate of up to 84.5%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leveraging Native Data to Correct Preposition Errors in Learners' Dutch

We address the task of automatically correcting preposition errors in learners’ Dutch by modelling preposition usage in native language. Specifically, we build two models exploiting a large corpus of Dutch. The first is a binary model for detecting whether a preposition should be used at all in a given position or not. The second is a multiclass model for selecting the appropriate preposition i...

متن کامل

Simple Preposition Correspondence: A Problem in English to Indian Language Machine Translation

The paper describes an approach to automatically select from Indian Language the appropriate lexical correspondence of English simple preposition. The paper describes this task from a Machine Translation (MT) perspective. We use the properties of the head and complement of the preposition to select the appropriate sense in the target language. We later show that the results obtained from this a...

متن کامل

Robust Systems for Preposition Error Correction Using Wikipedia Revisions

We show that existing methods for training preposition error correction systems, whether using well-edited text or error-annotated corpora, do not generalize across very different test sets. We present a new, large errorannotated corpus and use it to train systems that generalize across three different test sets, each from a different domain and with different error characteristics. This new co...

متن کامل

SpaceCase: A Model of Spatial Preposition Use

We present SpaceCase, a computational model of spatial preposition use that combines geometric and functional influences. SpaceCase treats spatial preposition use as governed by evidential rules, each representing influences of particular factors. Our model is unique in relying on both automatically constructed visual representations from sketched input, and drawing our functional representatio...

متن کامل

Correcting Preposition Errors in Learner English Using Error Case Frames and Feedback Messages

This paper presents a novel framework called error case frames for correcting preposition errors. They are case frames specially designed for describing and correcting preposition errors. Their most distinct advantage is that they can correct errors with feedback messages explaining why the preposition is erroneous. This paper proposes a method for automatically generating them by comparing lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007